Genetic and chemical rescue of the Saccharomyces cerevisiae phenotype induced by mitochondrial DNA polymerase mutations associated with progressive external ophthalmoplegia in humans.

نویسندگان

  • Enrico Baruffini
  • Tiziana Lodi
  • Cristina Dallabona
  • Andrea Puglisi
  • Massimo Zeviani
  • Iliana Ferrero
چکیده

The human POLG gene encodes the catalytic subunit of mitochondrial DNA polymerase gamma (pol gamma). Mutations in pol gamma are associated with a spectrum of disease phenotypes including autosomal dominant and recessive forms of progressive external ophthalmoplegia, spino-cerebellar ataxia and epilepsy, and Alpers-Huttenlocher hepatocerebral poliodystrophy. Multiple deletions, or depletion of mtDNA in affected tissues, are the molecular hallmarks of pol gamma mutations. To shed light on the pathogenic mechanisms leading to these phenotypes, we have introduced in MIP1, the yeast homologue of POLG, two mutations equivalent to the human Y955C and G268A mutations, which are associated with dominant and recessive PEO, respectively. Both mutations induced the generation of petite colonies, carrying either rearranged (rho-) or no (rho0) mtDNA. Mutations in genes that control the mitochondrial supply of deoxynucleotides (dNTP) affect the mtDNA integrity in both humans and yeast. To test whether the manipulation of the dNTP pool can modify the effects of pol gamma mutations in yeast, we have overexpressed a dNTP checkpoint enzyme, ribonucleotide reductase, RNR1, or deleted its inhibitor, SML1. In both mutant strains, the petite mutability was dramatically reduced. The same result was obtained by exposing the mutant strains to dihydrolipoic acid, an anti-oxidant agent. Therefore, an increase of the mitochondrial dNTP pool and/or a decrease of reactive oxygen species can prevent the mtDNA damage induced by pol gamma mutations in yeast and, possibly, in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA polymerase γ and disease: what we have learned from yeast

Mip1 is the Saccharomyces cerevisiae DNA polymerase γ (Pol γ), which is responsible for the replication of mitochondrial DNA (mtDNA). It belongs to the family A of the DNA polymerases and it is orthologs to human POLGA. In humans, mutations in POLG(1) cause many mitochondrial pathologies, such as progressive external ophthalmoplegia (PEO), Alpers' syndrome, and ataxia-neuropathy syndrome, all o...

متن کامل

Mitochondrial and nuclear DNA defects in Saccharomyces cerevisiae with mutations in DNA polymerase gamma associated with progressive external ophthalmoplegia.

A number of nuclear mutations have been identified in a variety of mitochondrial diseases including progressive external ophthalmoplegia (PEO), Alpers syndrome and other neuromuscular and oxidative phosphorylation defects. More than 50 mutations have been identified in POLG, which encodes the human mitochondrial DNA (mtDNA) polymerase gamma, PEO and Alpers patients. To rapidly characterize the ...

متن کامل

mip1 containing mutations associated with mitochondrial disease causes mutagenesis and depletion of mtDNA in Saccharomyces cerevisiae.

DNA polymerase gamma (pol gamma) is responsible for replication and repair of mitochondrial DNA (mtDNA). Over 150 mutations in POLG (which encodes pol gamma) have been discovered in patients with mitochondrial disorders including Alpers, progressive external ophthalmoplegia and ataxia-neuropathy syndrome. However, the severity and dominance of many POLG disease-associated mutations are unclear,...

متن کامل

Mutations in AAC2, equivalent to human adPEO-associated ANT1 mutations, lead to defective oxidative phosphorylation in Saccharomyces cerevisiae and affect mitochondrial DNA stability.

Autosomal dominant and recessive forms of progressive external ophthalmoplegia (adPEO and arPEO) are mitochondrial disorders characterized by the presence of multiple deletions of mitochondrial DNA in affected tissues. Four adPEO-associated missense mutations have been identified in the ANT1 gene. In order to investigate their functional consequences on cellular physiology, we introduced three ...

متن کامل

Recessive Twinkle mutations in early onset encephalopathy with mtDNA depletion.

Twinkle is a mitochondrial replicative helicase, the mutations of which have been associated with autosomal dominant progressive external ophthalmoplegia (adPEO), and recessively inherited infantile onset spinocerebellar ataxia (IOSCA). We report here a new phenotype in two siblings with compound heterozygous Twinkle mutations (A318T and Y508C), characterized by severe early onset encephalopath...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 15 19  شماره 

صفحات  -

تاریخ انتشار 2006